Skip to main content

Smalltalk Challenge: Post 6 - Morphic

As the Dynabook/Smalltalk environment was the first to introduce the windowed user interface, it's no surprise that the Model View Controller (MVC) pattern also made its first appearance in Smalltalk. In Smalltalk, the term "MVC" refers to both the architecture pattern that separates code responsibilities into model, view, and controller objects, and the user interface framework used to develop visual and interactive elements. The MVC framework manages objects in the environment using the MVC pattern.
  • Model objects are responsible for maintaining the behavior and state of the element.
  • View objects are responsible for the representation or appearance of the element within the world.
  • Controller objects are responsible for accepting user input and passing messages to the model and view objects.
But because of the complexity and limitations of the MVC architecture, Squeak has replaced the MVC framework with Morphic, a direct-manipulation user interface toolkit. Unlike MVC, Morphic didn't originate with Smalltalk. Rather, it was written by Randy Smith and John Maloney for Self, another OO programming language influenced by Smalltalk, and ported to Squeak by Maloney who is also one of the core Squeak developers.

All interactive elements that exist within the environment in Morphic are subclasses of Morph, and the majority of code that would normally be required by MVC is encapsulated in the Morph class. For example:
Morph new openInWorld.
will open a blue rectangle that you can move about the screen, resize, rotate, and more. When a custom morph extends Morph, it inherits all of its parent's functionality and the programmer is freed to focus on customizing the morph instead of writing boiler-plate code. As Maloney wrote in An Introduction to Morphic, "In morphic, a little code goes a long way, and there is hardly any wasted effort."

I actually took advantage of Morphic in my Kember Identity search code, though it's not something one might think of as requiring a manipulatable object. The step message is intended for creating animations and morphs that update themselves dynamically over time (adding liveness to the interface). Morphic repeatedly sends step messages to each morph which may respond by executing their step method (the rate at which step messages are sent to an object can be specified by responding to the stepTime message, but by default I believe it's set for every few milliseconds or so). The method actions run concurrently with whatever else is happening in the rest of the environment. This builtin threading was exactly what I needed to ensure the rest of the system remained responsive to the user while the code was searching for a hash that exhibits the Kember Identity.

I subclassed the TextMorph class and supplied the following step method:
Kember » step
    found | (currHash = stopHash)
        ifFalse: [self contents: 'Testing ' , currHash.
            found := self test: currHash.
                found ifTrue: [self contents: 'Found '
                        , currHash , '!'].
            currHash := self nextHash: currHash.
            currHash = stopHash
                ifTrue: [self contents: 'KI was not found.']].
The contents: method is inherited from TextMorph to set the displayed text string, and the rest are instance variables and methods specific to my Kember class.

Morphs can respond to several other messages sent by the framework, too. Responding to the drawOn:message allows a morph to customize its appearance, or how it "draws" itself in the environment. Responding to mouseDown:, mouseUp:, mouseMove:, and keyStroke: events lets the morph interact with the user's mouse and keyboard activities.

Well that's 6 posts down now and only 4 more to go before I complete my challenge!

Comments

Popular posts from this blog

Geolocation Search

Services that allow users to identify nearby points of interest continue to grow in popularity. I'm sure we're all familiar with social websites that let you search for the profiles of people near a postal code, or mobile applications that use geolocation to identify Thai restaurants within walking distance. It's surprisingly simple to implement such functionality, and in this post I will discuss how to do so.

The first step is to obtain the latitude and longitude coordinates of any locations you want to make searchable. In the restaurant scenario, you'd want the latitude and longitude of each eatery. In the social website scenario, you'd want to obtain a list of postal codes with their centroid latitude and longitude.

In general, postal code-based geolocation is a bad idea; their boundaries rarely form simple polygons, the area they cover vary in size, and are subject to change based on the whims of the postal service. But many times we find ourselves stuck on a c…

Composing Music with PHP

I’m not an expert on probability theory, artificial intelligence, and machine learning. And even my Music 201 class from years ago has been long forgotten. But if you’ll indulge me for the next 10 minutes, I think you’ll find that even just a little knowledge can yield impressive results if creatively woven together. I’d like to share with you how to teach PHP to compose music. Here’s an example: You’re looking at a melody generated by PHP. It’s not the most memorable, but it’s not unpleasant either. And surprisingly, the code to generate such sequences is rather brief. So what’s going on? The script calculates a probability map of melodic intervals and applies a Markov process to generate a new sequence. In friendlier terms, musical data is analyzed by a script to learn which intervals make up pleasing melodies. It then creates a new composition by selecting pitches based on the possibilities it’s observed. . Standing on ShouldersComposition doesn’t happen in a vacuum. Bach was f…

Reading Unicode (UTF-8) in C

In working on scanner code for Kiwi I did a bit of reading up on Unicode. It's not really as difficult as one might think parsing UTF-8 character by character in C. In the end I opted to use ICU so I could take advantage of its character class functions instead of rolling my own, but the by-hand method I thought was still worth sharing. Functions like getc() read in a byte from an input stream. ASCII was the predominant encoding scheme and encoded characters in 7-8 bits, so reading a byte was effectively the same as reading a character. But you can only represent 255 characters using 8 bits, far too little to represent all the characters of the world's languages. The most common Unicode scheme is UTF-8, is a multi-byte encoding scheme capable of representing over 2 million characters using 4 bytes or less. The 128 characters of 7-bit ASCII encoding scheme are encoded the same, the most-significant bit is always 0. Other characters can be encoded as multiple bytes but the mo…